Excel Sheets Templates

Design of Bridge Slab Spreadsheet

Design of Bridge Slab Spreadsheet

 

Reinforced Slab Bridges used For short spans, a solid reinforced concrete slab, generally cast in-situ rather than precast, is the simplest design to about 25m span, such voided slabs are more economical than prestressed slabs.
Slab bridges are defined as structures where the deck slab also serves as the main load-carrying component. The span-to-width ratios are such that these bridges may be designed for simple 1-way bending as opposed to 2-way plate bending. This design guide provides a basic procedural outline for the design of slab bridges using the LRFD Code and also includes a worked example.
The LRFD design process for slab bridges is similar to the LFD design process. Both codes require the main reinforcement to be designed for Strength, Fatigue, Control of Cracking, and Limits of Reinforcement. All reinforcement shall be fully developed at the point of necessity. The minimum slab depth guidelines specified in Table 2.5.2.6.3-1 need not be followed if the reinforcement meets these requirements.
For design, the Approximate Elastic or “Strip” Method for slab bridges found in Article 4.6.2.3 shall be used.
According to Article 9.7.1.4, edges of slabs shall either be strengthened or be supported by an edge beam which is integral with the slab. As depicted in Figure 3.2.11-1 of the Bridge Manual, the #5 d1 bars which extend from the 34 in. F-Shape barrier into the slab qualify as shear reinforcement (strengthening) for the outside edges of slabs.
When a 34 in. or 42 in. F-Shape barrier (with similar d1 bars) is used on a slab bridge, its structural adequacy as an edge beam should typically only need to be verified. The barrier should not be considered structural. Edge beam design is required for bridges with open joints and possibly at stage construction lines. If the out-to-out width of a slab bridge exceeds 45 ft., an open longitudinal joint is required.

Download Link

The Engineering Community

Recent Posts

How Artificial intelligence (AI) can optimize bridges design?

How Artificial intelligence (AI) can optimize bridges design? Introduction:   Bridges are important pieces of infrastructure that connect communities and…

7 months ago

How AI can help in Highways and Railways design?

How AI can help in Highways and Railways design?   Introduction:   Artificial Intelligence (AI) has emerged as a transformative…

7 months ago

Enhancing Road Modeling Efficiency : Leveraging ChatGPT with Civil3D

Enhancing Road Modeling Efficiency : Leveraging ChatGPT with Civil3D Introduction: Road modeling is a critical component of civil engineering and…

11 months ago

What are Stirrups and Why we Use Them?

What are Stirrups and Why we Use Them?   Steel reinforcement is an essential component of reinforced concrete, providing tensile…

1 year ago

Why Are Spiral Curves Important? Benefits And Elements Of Spiral Curve

Why Are Spiral Curves Important? Benefits And Elements Of Spiral Curve   1. Introduction:   Spiral curves are an important…

1 year ago

The Main Types Of Tunnels

The Main Types Of Tunnels   Tunnels have been used for various purposes throughout history, from transportation and infrastructure to…

1 year ago

This website uses cookies.