Construction

Cladding for Tall Buildings

Cladding for Tall Buildings

 

Cladding is prefabricated panels that are attached to the structural frame of the building. The main function of cladding is to prevent the transmission of sound, provide thermal insulation, create an external facade, and prevent the spread of fire.

There are different cladding systems, such as curtain wall, metal curtain, stone cladding, brick claddings, precast concrete, and timber cladding.

Cladding systems are non structural elements. However, cladding can play a structural role in transferring wind loads, impact loads, and self-weight back to the structural framework. In particular, wind causes positive and negative pressure on the surface of buildings, so cladding must be designed to have adequate strength and stiffness to resist this load, both in terms of the type of cladding selected and its connections back to the structure.

Particularly in tall buildings, the wind pressure on the glazing is one of the important design considerations, this is because if one glazing fails, when it is fallings off, it will also hit the glazing on the below floors, which will cause a continues failure of the glazing.

Fig.1 shows the typical connection between the facade to structural members. On tall buildings, access systems must be provided to cladding system allowing regular inspection, maintenance, cleaning, and replacement (in particular, replacement of external seals).

Fig.1.Connection details of cladding to structural members

Curtain wall are used widely for tall buildings. Typically, curtain wall systems comprise a light weight frame onto which glazed or opaque infill panels can be fixed. These infill panels are often described as ‘glazing’ whether or not they are made of glass as shown in Figs.2 and 3.

Fig.2.A typical cladding of a tall building in Hague, Netherland

Fig.3. A glass curtain wall example of a building in Delft, Netherland

The frames play an important role in transferring loads back to the primary structure of the building and accommodating differential movement and deflection. Therefore, needs to be designed in detail. In some companies, therefore special fac ade design team to handle it.

 

The Engineering Community

Recent Posts

How Artificial intelligence (AI) can optimize bridges design?

How Artificial intelligence (AI) can optimize bridges design? Introduction:   Bridges are important pieces of infrastructure that connect communities and…

7 months ago

How AI can help in Highways and Railways design?

How AI can help in Highways and Railways design?   Introduction:   Artificial Intelligence (AI) has emerged as a transformative…

7 months ago

Enhancing Road Modeling Efficiency : Leveraging ChatGPT with Civil3D

Enhancing Road Modeling Efficiency : Leveraging ChatGPT with Civil3D Introduction: Road modeling is a critical component of civil engineering and…

11 months ago

What are Stirrups and Why we Use Them?

What are Stirrups and Why we Use Them?   Steel reinforcement is an essential component of reinforced concrete, providing tensile…

1 year ago

Why Are Spiral Curves Important? Benefits And Elements Of Spiral Curve

Why Are Spiral Curves Important? Benefits And Elements Of Spiral Curve   1. Introduction:   Spiral curves are an important…

1 year ago

The Main Types Of Tunnels

The Main Types Of Tunnels   Tunnels have been used for various purposes throughout history, from transportation and infrastructure to…

1 year ago

This website uses cookies.