Hydraulic

Dams and Appurtenant Hydraulic Structures

Dams and Appurtenant Hydraulic Structures

Water, one of the few natural resources without which there is no life, is distributed
throughout the world unevenly in terms of place, season and quality. For this reason it
is essential to construct dams on rivers, thus forming reservoirs for the storage and the
even use of water. To date, forty-two thousand large dams have been built worldwide,
and hundreds of thousands of smaller ones, which have made possible a rational use
of a certain amount of river water – the most important water resource for human
life and activity. Dams, together with their appurtenant hydraulic structures, belong
among the most complex engineering works, above all because of their interaction with
the water, their great influence on the environment and their high cost. Therefore great
significance is given to theoretical research relating to dams, to improving the methods
of analysing and constructing them, and to the knowledge gained in the course of their
exploitation. In the past forty years great progress has been made in this respect.

Water plays an exceptionally significant role in the economy and in the life of all coun-
tries. It is of crucial importance to the existence of people, animals, and vegetation. The
settling of people in different regions of the Earth has always been closely dependant
on the possibilities for water supply, parallel with those for providing food, shelter,
and heat. The increase in population, as well as the development and enrichment of
mankind, in a number of places has reached a level at which the water supply, needed
for the population, industry, irrigation, and production of electric power, has been

brought to a critical point.

On the other hand, reserves of water on Earth are very large. They have been
estimated to amount to 1.45 billion km3 (Grishin et al., 1979). If we assume that
the above quantity of water is uniformly spread over the Earth’s surface, then the
thickness of such a water layer would be almost 3,000 m. As much as 90% of that
quantity is attributable to the water of oceans and seas, while the remainder of barely
10% belongs to lakes, rivers, underground waters, and glaciers, as well as moisture
from water in the atmosphere. Only 1/5 of the freshwater, which is suitable for man’s
life and activities, is available for use.

[su_button url=”https://drive.google.com/open?id=1UwHuUQjKq64YSIgZZDxj9D2jezBqpJk2″ size=”7″ center=”yes”] Download Link[/su_button]
The Engineering Community

Recent Posts

How Artificial intelligence (AI) can optimize bridges design?

How Artificial intelligence (AI) can optimize bridges design? Introduction:   Bridges are important pieces of infrastructure that connect communities and…

7 months ago

How AI can help in Highways and Railways design?

How AI can help in Highways and Railways design?   Introduction:   Artificial Intelligence (AI) has emerged as a transformative…

7 months ago

Enhancing Road Modeling Efficiency : Leveraging ChatGPT with Civil3D

Enhancing Road Modeling Efficiency : Leveraging ChatGPT with Civil3D Introduction: Road modeling is a critical component of civil engineering and…

11 months ago

What are Stirrups and Why we Use Them?

What are Stirrups and Why we Use Them?   Steel reinforcement is an essential component of reinforced concrete, providing tensile…

1 year ago

Why Are Spiral Curves Important? Benefits And Elements Of Spiral Curve

Why Are Spiral Curves Important? Benefits And Elements Of Spiral Curve   1. Introduction:   Spiral curves are an important…

1 year ago

The Main Types Of Tunnels

The Main Types Of Tunnels   Tunnels have been used for various purposes throughout history, from transportation and infrastructure to…

1 year ago

This website uses cookies.